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Abstract- Matrix clock is a generalisation of the notion of 
vector clock. Matrix clock is a mechanism for capturing 
chronological and causal relationship in a Distributed system. 
Matrix clock is a list of vector clocks, and it also contains the 
current state of each node in the system. On the basis of this it 
know which peer received already which messages. When it 
exchanges messages with another node in the system then it 
compare the matrix clocks and remember always the highest 
values for each node. After retrieve back information of node 
it delete messages which were sent before, it considered that 
the node already have received them. Matrix clock allows 
establishing a lower bound on what other hosts know, and is 
useful in applications such as check pointing and garbage 
collection. 
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I. INTRODUCTION 
A matrix clock is an extension of the vector clocks 

that also contains the information about the other processes 
views of the system. Matrix clock is key to the solution of 
above problem is that the send and receive events 
corresponding to a particular message-passing action can 
be unambiguously matched. Any other ways of retaining 
this information, such as annotating send and receive 
timestamps with a unique message identifier at single 
matrix called matrix clock implementation, will be 
effective. In a landmark article, Lamport [1] defined the 
causal relationships among events occurring in a message 
passing distributed computation as the smallest relation → 
such that 

(i) if e and f are events in the same process, and e occurs 
before f , then e→f, 
(ii) if event e denotes transmission of a message m by a 
process, and event f denotes reception of the same 
message m by another process, then e→f, and 
(iii) if e→f and f →g, then e→g. 

II. VECTOR CLOCK

A number of researchers, most notably Mattern [2] and 
Fidge [3], later independently proposed vector clocks as a 
timestamping mechanism for distributed computations that 
captures causality. 

In a computation involving n parallel processes, each 
process p maintains a logical clock vector of length nൈn. 
These vectors are used to timestamp each event e and are 
also piggybacked onto each outgoing message m. Let	Ԧ, Ԧ݁ 
and ሬ݉ሬԦ be the vectors associated with the respective process 
clock, event timestamp and piggybacked message matrices 
[4]. 

For some vector ݒԦ let ݒԦ(i) denotes its ith element. 
Vector elements act as counters of the number of events 
known to have occurred in each process. They are 
maintained using the following steps. 

i. For each process p, all elements of Ԧ are initially
0.

ii. When process p performs some internal event e, it
a. Increments process clock element Ԧ(p),

and
b. Sets event timestamp Ԧ݁ equal to Ԧ.

iii. When process p performs a send event e, that
produces a message m,

a. it increments process clock element Ԧ(p),
b. Sets event timestamp Ԧ݁ equal to Ԧ, and
c. Sets the piggybacked timestamp ሬ݉ሬԦ

attached to the outgoing message equal to
.Ԧ

iv. When process p performs a receive event e, that
accepts a message m with piggybacked timestamp
ሬ݉ሬԦ, it

a. Increments process clock element	ሬሬሬԦሺሻ,
b. Sets each process clock element Ԧ(i) equal

to max (Ԧ(i),	 ሬ݉ሬԦሺ݅ሻ), where i ranges from 1
to n, and

c. Sets event timestamp Ԧ݁ equal to	Ԧ.

Fig. 1 Vector clock 

III. LIMITATIONS OF VECTOR CLOCK

It is tempting, therefore, to conclude that a set of 
vector timestamps, one per event, fully characterize a 
distributed computation. However, we observe that in 
systems that allow message ‘overtaking’ this is not 
necessarily so. Fig. 2 shows two distinct computations that 
have identical event timestamps. On the left events a and d 
are internal to processes P1 and P2. However, in the 
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computation on the right event a is a send, and event d is a 
receive. Despite the obvious differences between the 
computations, the rules for maintaining vector clocks in 
Section 2 timestamp their events identically. An attempt to 
reconstruct either of these computations accurately from 
the event timestamps alone would be thwarted by this 
ambiguity [5]. 

Thus, merely prohibiting overtaking of messages 
between pair of processes is not sufficient to avoid the 
problem. One may think that keeping track of the ‘type’ of 
events, i.e., whether they are internal, sends or receives, 
would resolve the problem [7]. Certainly this information 
would be sufficient to disambiguate the computations in 
Fig. 2. Corresponding events in the computations receive 
the same timestamps, and have the same ‘types’, but the 
computations are different [6]. 

 
Fig. 2 Identical timestamp within two different computations 

 
Solution  

Matrix clock is key to the solution of above 
problem is that the send and receive events corresponding 
to a particular message-passing action can be 
unambiguously matched. Any other ways of retaining this 
information, such as annotating send and receive 
timestamps with a unique message identifier at single 
matrix called matrix clock implementation, will be 
effective. 

 
IV. MATRIX CLOCK 

A. Definition 
  Matrix clocks is an extension of the vector clocks that 

also contains the information about the other processes 
views of the system. 

In a system of matrix clocks, the time is represented by 
a set of n × n matrices of non-negative integers. A process 
pi  maintains a matrix mti [1...n, 1...n] where 

 mti [i,i] denotes the local logical clocks of pi  and 
track the progress of the computation at process pi. 

 mti[i,j] represent the latest knowledge that process 
pi  has about the knowledge of pi  has about the 
logical local clock of pj. The entire matrix mti 
denotes pi’s local view of the logical global time. 

Note that  row mti[i,.] is nothing but the vector clock 
vti[.] and exhibits all properties of vector clocks. 
Processes  pi uses the following rules Rule R1 and Rule R2 
uses to update its clock: 

 Rule R1 : Before executing an event and it update  
its local logical time as follows: 
            mti[i,i] = mti[i,i]+d       (d > 0) 

 Rule R2: Each message m is piggy-backed with 
matrix time mt. When pi receives a message (m, 
mt) from a process pj, pi  executes the following 
sequence of actions: 

o Update its logical global time as follows:  
1≤ k ≤ n : mti [i,k] = max( mti[i,k], mt[j,k] ) 
1≤ k , l ≤ n : mti [k,l] = max( mti[k,l], mt[k,l] ) 
o Execute R1. 
o Deliver message m. 

Basic property: 
Clearly vector mti [i,.] contains all the properties 

of the vector clocks. In addition Matrix clocks have the 
following property: 
min(mti [k,l] ) ≥ t, where process pi knows that every other 
process pk knows that pi’s local                     
time has progressed till t  

If this is true, it is clear that process pi know that 
all other processes know that pi will never send information 
with a local time ≤ t. In many applications, this implies that 
process will no longer require from pi certain information 
and can use this fact to discard obsolete information. 
If d is always 1 in the rule R1, then mti [k,l], denotes the 
number of events occurred at pi and known at pk as for as 
pi’s knowledge is concerned. 

 
Fig. 3 The Matrix clock 

B.  Implementation of matrix clock: 
(1)  

(a) Initially all the matrices of events are zero for each 
process. 

 
Fig. 4 Initial form of matrix clock 
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(b) If there is n processes run at same time then 
every event contain n × n matrix. 
(c) Each event has n vector clocks, every one for 
each process 
(d) The n th vector on process i is called process n 
’s principle vector 
(e) Principle vector is the same as vector clock 
before 
(f) Non-principle vectors are just piggybacked on 

messages to update “knowledge”. 
(2) Whenever any events occur then increment the 

clock value of vector. 
(3) If we perform any internal event e in process then 

 

 
Fig. 5 Example of matrix time stamping 

(a) In principal vector: 
i. Increment the process clock element. 

ii. Set the timestamp e equal to p. 
(b) In non-principal vector : 
i. Initially all the non-principal vectors are zero. 

ii. If event come from any other process then at the 
position of non-principal vector put the principal 
vector where it come from. 

 
Fig. 6 How to work principal and non-principal vector in 

matrix clock 

Note: Non principal vector are used to know about 
the other process information. 

(4) When process perform the send operation (send 
event) e, that gives a message m, then it:  
In principal vector: 

i. After sending the event operation increments the 
process clock element p. 

ii. Sets event timestamp e equal to p, and 
iii. Sets the piggy-backed timestamp m attached to the 

outgoing message equal to p. 
In non-principal vector: 

i. Fetch the non-principal vectors from the previous 
related event’s principal vector, for information. 

ii. Previous related event’s principal vector = present 
event’s non principal vector. 
 

(5) When processes perform the receive operation ( 
receive messages) receive event e, that gives a 
message m with piggy-backed timestamp m , then 
it gives some following rules: 
In principal vector: 

i. After receiving the event increment process clock 
element p. 

ii. Setting each process element p equal to  
Max (p (i), (m (i)), 
Where i range from 1 to n  

iii. Set the event timestamp e equal to p. 
In non-principal vector: 

i. Fetch the previous events principal vectors 
and put is as non-principal vector. 

Note: 
(1) Principal vector as active side of matrix, which is 

important and it works as vector clock. 
(2) Non principal vector are non-active side, but it 

store the important information of the previous 
principal vectors, which is very important to 
synchronization of event ordering of the messages. 
 

V. EFFICIENCY OF TECHNIQUE 
Now compute the efficiency of the proposed 

compaction technique. We define the efficiency of a 
compaction technique as the average percentage reduction 
in the size of the timestamp related information to be 
transferred in a message as compared to when sending the 
entire matrix timestamp. We also define the following 
term: 
n: the average number of entries in Ti that qualify for 
transmission in a message using the proposed technique. 
b: the number of bits in a sequence number. 
log2N : the number of bits needed to code N process ids. 

The mattern / fidge clock require N.b bits of 
timestamp information, whereas the proposed technique 
require (log2N+b).n2 bits and vector timestamp technique 
require (log2N+b).n bits [8]. Thus the efficiency of the 
technique is given by the following expression: 

{1-		
ሺܗܔ .ሻ࢈ାࡺ

ࡺ.࢈
 }*100 % 

It is easy to see that the propped technique is 
beneficial only if n < N.b/( log2N+b). 
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Fig. 7 Efficiency comparison between vector clock and matrix clock 

 

TABLE 1 TIMESTAMP VALUE AT SINGLE EVENT 
Timestamp value at single event 

Number of 
processes 

Lamport 
clock 

Vector clock 
Matrix 
clock 

1 1 1 1 
2 1 2 4 
3 1 3 9 
4 1 4 16 
5 1 5 25 

 
 

 
Fig. 8 Compare between lamport, vector, and matrix clock timestamp 

value at single event 

 
VI. CONCLUSION 

We have described about the matrix clock for 
characterizing distributed computations, and have 
examined its implementation and closure property In this 
paper we have presented an efficient technique to maintain 
the matrix clock, which cuts down the communication 
overhead due to propagation of matrix timestamp by 
sending only incremental changes in the timestamp. The 
technique can cut down the communication overhead 
substantially if the interaction between processes is 

localised. The technique has a small memory overhead. 
However this is not serious because main memory is cheap 
and is available in large quantities, and it is more desirable 
to reduce traffic on a communication network whose 
capacity is limited and is often the bottleneck. 
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