
Matrix Clock Synchronization in the Distributed
Computing Environment

Avaneesh Singh#1, Neelendra Badal#2

#1#2Computer science and Engg. Department at Kamla Nehru Institute of Technology,
Sultanpur, U.P., India

Abstract- Matrix clock is a generalisation of the notion of
vector clock. Matrix clock is a mechanism for capturing
chronological and causal relationship in a Distributed system.
Matrix clock is a list of vector clocks, and it also contains the
current state of each node in the system. On the basis of this it
know which peer received already which messages. When it
exchanges messages with another node in the system then it
compare the matrix clocks and remember always the highest
values for each node. After retrieve back information of node
it delete messages which were sent before, it considered that
the node already have received them. Matrix clock allows
establishing a lower bound on what other hosts know, and is
useful in applications such as check pointing and garbage
collection.

Keywords- Distributed computing, Vector clock, Matrix clock,
Event ordering, Clock synchronization, Logical clock.

I. INTRODUCTION
A matrix clock is an extension of the vector clocks

that also contains the information about the other processes
views of the system. Matrix clock is key to the solution of
above problem is that the send and receive events
corresponding to a particular message-passing action can
be unambiguously matched. Any other ways of retaining
this information, such as annotating send and receive
timestamps with a unique message identifier at single
matrix called matrix clock implementation, will be
effective. In a landmark article, Lamport [1] defined the
causal relationships among events occurring in a message
passing distributed computation as the smallest relation →
such that

(i) if e and f are events in the same process, and e occurs
before f , then e→f,
(ii) if event e denotes transmission of a message m by a
process, and event f denotes reception of the same
message m by another process, then e→f, and
(iii) if e→f and f →g, then e→g.

II. VECTOR CLOCK

A number of researchers, most notably Mattern [2] and
Fidge [3], later independently proposed vector clocks as a
timestamping mechanism for distributed computations that
captures causality.

In a computation involving n parallel processes, each
process p maintains a logical clock vector of length nൈn.
These vectors are used to timestamp each event e and are
also piggybacked onto each outgoing message m. Let	Ԧ, Ԧ݁
and ሬ݉ሬԦ be the vectors associated with the respective process
clock, event timestamp and piggybacked message matrices
[4].

For some vector ݒԦ let ݒԦ(i) denotes its ith element.
Vector elements act as counters of the number of events
known to have occurred in each process. They are
maintained using the following steps.

i. For each process p, all elements of Ԧ are initially
0.

ii. When process p performs some internal event e, it
a. Increments process clock element Ԧ(p),

and
b. Sets event timestamp Ԧ݁ equal to Ԧ.

iii. When process p performs a send event e, that
produces a message m,

a. it increments process clock element Ԧ(p),
b. Sets event timestamp Ԧ݁ equal to Ԧ, and
c. Sets the piggybacked timestamp ሬ݉ሬԦ

attached to the outgoing message equal to
.Ԧ

iv. When process p performs a receive event e, that
accepts a message m with piggybacked timestamp
ሬ݉ሬԦ, it

a. Increments process clock element	ሬሬሬԦሺሻ,
b. Sets each process clock element Ԧ(i) equal

to max (Ԧ(i),	 ሬ݉ሬԦሺ݅ሻ), where i ranges from 1
to n, and

c. Sets event timestamp Ԧ݁ equal to	Ԧ.

Fig. 1 Vector clock

III. LIMITATIONS OF VECTOR CLOCK

It is tempting, therefore, to conclude that a set of
vector timestamps, one per event, fully characterize a
distributed computation. However, we observe that in
systems that allow message ‘overtaking’ this is not
necessarily so. Fig. 2 shows two distinct computations that
have identical event timestamps. On the left events a and d
are internal to processes P1 and P2. However, in the

Avaneesh Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3510-3513

www.ijcsit.com 3510

computation on the right event a is a send, and event d is a
receive. Despite the obvious differences between the
computations, the rules for maintaining vector clocks in
Section 2 timestamp their events identically. An attempt to
reconstruct either of these computations accurately from
the event timestamps alone would be thwarted by this
ambiguity [5].

Thus, merely prohibiting overtaking of messages
between pair of processes is not sufficient to avoid the
problem. One may think that keeping track of the ‘type’ of
events, i.e., whether they are internal, sends or receives,
would resolve the problem [7]. Certainly this information
would be sufficient to disambiguate the computations in
Fig. 2. Corresponding events in the computations receive
the same timestamps, and have the same ‘types’, but the
computations are different [6].

Fig. 2 Identical timestamp within two different computations

Solution

Matrix clock is key to the solution of above
problem is that the send and receive events corresponding
to a particular message-passing action can be
unambiguously matched. Any other ways of retaining this
information, such as annotating send and receive
timestamps with a unique message identifier at single
matrix called matrix clock implementation, will be
effective.

IV. MATRIX CLOCK

A. Definition
 Matrix clocks is an extension of the vector clocks that

also contains the information about the other processes
views of the system.

In a system of matrix clocks, the time is represented by
a set of n × n matrices of non-negative integers. A process
pi maintains a matrix mti [1...n, 1...n] where

 mti [i,i] denotes the local logical clocks of pi and
track the progress of the computation at process pi.

 mti[i,j] represent the latest knowledge that process
pi has about the knowledge of pi has about the
logical local clock of pj. The entire matrix mti
denotes pi’s local view of the logical global time.

Note that row mti[i,.] is nothing but the vector clock
vti[.] and exhibits all properties of vector clocks.
Processes pi uses the following rules Rule R1 and Rule R2
uses to update its clock:

 Rule R1 : Before executing an event and it update
its local logical time as follows:
 mti[i,i] = mti[i,i]+d (d > 0)

 Rule R2: Each message m is piggy-backed with
matrix time mt. When pi receives a message (m,
mt) from a process pj, pi executes the following
sequence of actions:

o Update its logical global time as follows:
1≤ k ≤ n : mti [i,k] = max(mti[i,k], mt[j,k])
1≤ k , l ≤ n : mti [k,l] = max(mti[k,l], mt[k,l])
o Execute R1.
o Deliver message m.

Basic property:
Clearly vector mti [i,.] contains all the properties

of the vector clocks. In addition Matrix clocks have the
following property:
min(mti [k,l]) ≥ t, where process pi knows that every other
process pk knows that pi’s local
time has progressed till t

If this is true, it is clear that process pi know that
all other processes know that pi will never send information
with a local time ≤ t. In many applications, this implies that
process will no longer require from pi certain information
and can use this fact to discard obsolete information.
If d is always 1 in the rule R1, then mti [k,l], denotes the
number of events occurred at pi and known at pk as for as
pi’s knowledge is concerned.

Fig. 3 The Matrix clock

B. Implementation of matrix clock:
(1)

(a) Initially all the matrices of events are zero for each
process.

Fig. 4 Initial form of matrix clock

Avaneesh Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3510-3513

www.ijcsit.com 3511

(b) If there is n processes run at same time then
every event contain n × n matrix.
(c) Each event has n vector clocks, every one for
each process
(d) The n th vector on process i is called process n
’s principle vector
(e) Principle vector is the same as vector clock
before
(f) Non-principle vectors are just piggybacked on

messages to update “knowledge”.
(2) Whenever any events occur then increment the

clock value of vector.
(3) If we perform any internal event e in process then

Fig. 5 Example of matrix time stamping

(a) In principal vector:
i. Increment the process clock element.

ii. Set the timestamp e equal to p.
(b) In non-principal vector :
i. Initially all the non-principal vectors are zero.

ii. If event come from any other process then at the
position of non-principal vector put the principal
vector where it come from.

Fig. 6 How to work principal and non-principal vector in

matrix clock

Note: Non principal vector are used to know about
the other process information.

(4) When process perform the send operation (send
event) e, that gives a message m, then it:
In principal vector:

i. After sending the event operation increments the
process clock element p.

ii. Sets event timestamp e equal to p, and
iii. Sets the piggy-backed timestamp m attached to the

outgoing message equal to p.
In non-principal vector:

i. Fetch the non-principal vectors from the previous
related event’s principal vector, for information.

ii. Previous related event’s principal vector = present
event’s non principal vector.

(5) When processes perform the receive operation (
receive messages) receive event e, that gives a
message m with piggy-backed timestamp m , then
it gives some following rules:
In principal vector:

i. After receiving the event increment process clock
element p.

ii. Setting each process element p equal to
Max (p (i), (m (i)),
Where i range from 1 to n

iii. Set the event timestamp e equal to p.
In non-principal vector:

i. Fetch the previous events principal vectors
and put is as non-principal vector.

Note:
(1) Principal vector as active side of matrix, which is

important and it works as vector clock.
(2) Non principal vector are non-active side, but it

store the important information of the previous
principal vectors, which is very important to
synchronization of event ordering of the messages.

V. EFFICIENCY OF TECHNIQUE
Now compute the efficiency of the proposed

compaction technique. We define the efficiency of a
compaction technique as the average percentage reduction
in the size of the timestamp related information to be
transferred in a message as compared to when sending the
entire matrix timestamp. We also define the following
term:
n: the average number of entries in Ti that qualify for
transmission in a message using the proposed technique.
b: the number of bits in a sequence number.
log2N : the number of bits needed to code N process ids.

The mattern / fidge clock require N.b bits of
timestamp information, whereas the proposed technique
require (log2N+b).n2 bits and vector timestamp technique
require (log2N+b).n bits [8]. Thus the efficiency of the
technique is given by the following expression:

{1-		
ሺܗܔ .ሻ࢈ାࡺ

ࡺ.࢈
 }*100 %

It is easy to see that the propped technique is
beneficial only if n < N.b/(log2N+b).

Avaneesh Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3510-3513

www.ijcsit.com 3512

Fig. 7 Efficiency comparison between vector clock and matrix clock

TABLE 1 TIMESTAMP VALUE AT SINGLE EVENT
Timestamp value at single event

Number of
processes

Lamport
clock

Vector clock
Matrix
clock

1 1 1 1
2 1 2 4
3 1 3 9
4 1 4 16
5 1 5 25

Fig. 8 Compare between lamport, vector, and matrix clock timestamp

value at single event

VI. CONCLUSION

We have described about the matrix clock for
characterizing distributed computations, and have
examined its implementation and closure property In this
paper we have presented an efficient technique to maintain
the matrix clock, which cuts down the communication
overhead due to propagation of matrix timestamp by
sending only incremental changes in the timestamp. The
technique can cut down the communication overhead
substantially if the interaction between processes is

localised. The technique has a small memory overhead.
However this is not serious because main memory is cheap
and is available in large quantities, and it is more desirable
to reduce traffic on a communication network whose
capacity is limited and is often the bottleneck.

ACKNOWLEDGMENT

I wish to thank the respected referees for pointing out a
number of important references, and the professors of the
Kamla Nehru Institute of Technology, Sultanpur in
Distributed Computing course for helpful discussion and
giving favourable environment.

REFERENCES

[1] L. Lamport, Time, clocks, and the ordering of events in a distributed
system, Comm. ACM 21 (7) (July 1978) 558–565.

[2] F. Mattern, Virtual time and global states of distributed systems, in:
M. Cosnard et al. (Eds.), Parallel and Distributed Algorithms, North-
Holland, Amsterdam, 1989.

[3] C.J. Fidge, Timestamps in message-passing systems that preserve the
partial ordering, Australian Comput. Sci. Comm. 10 (1) (February
1988) 56–66.

[4] C.J. Fidge, Fundamentals of distributed system observation, IEEE
Software 13 (6) (November 1996) 77–83.

[5] Raynal M. and Singhal M., "Logical time: Capturing causality in
distributed systems," Computer, vol. 29, pp. 49-56, 1996.

[6] Fidge C., "Logical time in distributed computing systems," IEEE
Computer, vol. 24, pp. 28-33, 1991.

[7] C.J. Fidge, A limitation of vector timestamps for reconstructing
distributed computations, in: Elsevier Science, PII: S0020-0190(98)
0014 3- 4, 1998, Information Processing Letters 87–91.

[8] Mukesh Singhal, Ajay Kshemkalyani, “ An efficient implementation
of vector clocks”, in Elsevier Science publishers, 0020-0190 /92
1992, Information Processing Letters 90–92.

AUTHORS
Avaneesh Singh received his Bachelor of
Technology Degree in Computer Science and
engineering in 2012 from Goel Institute of
Technology and Management ,Lucknow,
India, affiliated to Gautam Buddh Technical
University (Formerly Uttar Pradesh Technical
University) Lucknow, India. Currently he is
pursuing Master of Technology in Computer
Science and Engineering from Kamla Nehru
Institute of Technology (An Academic
Autonomous Govt. Engg. Institute), Sultanpur

(U. P.), India, affiliated to Uttar Pradesh Technical University, Lucknow,
India. His research areas of interests are Distributed Computing system.

Dr. Neelendra Badal is an Assistant
Professor in the Department of Computer
Science & Engineering at Kamla Nehru
Institute of Technology, (KNIT), at
Sultanpur (U.P.), INDIA. He received B.E.
(1997) from Bundelkhand Institute of
Technology (BIET), Jhansi (U.P.), INDIA,
in Computer Science & Engineering, M.E.
(2001) in Communication, Control and
Networking from Madhav Institute of

Technology and Science (MITS), Gwalior (M.P.), INDIA and PhD (2009)
in Computer Science & Engineering from Motilal Nehru National Institute
of Technology (MNNIT), Allahabad (U.P.), INDIA. He is Chartered
Engineering (CE) from Institution of Engineers (IE), India. He is a Life
Member of IE, IETE, ISTE, CSI, India. He has published more than 50
papers in International/National Journals, conferences and seminars. His
research interests are Distributed System, Parallel Processing, GIS, Data
Warehouse & Data mining, Software engineering and Networking

Avaneesh Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3510-3513

www.ijcsit.com 3513

